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Evaluation of Tr(JY) using the Brillouin function 

P R Subramaniant 
Institut fur Theoretische Physik, Johann Wolfgang Goethe Universitat, Postfach 11 1932, 
D-6000 Frankfurt am Main 11, West Germany 

Received 10 June 1985 

Abstract. We obtain expressions for Tr(J:P) in terms of the Brillouin function. Standard 
properties of Tr(/?) are derived from them. Sum rules for the Bernoulli numbers and the 
Riemann zeta functions are deduced as corollaries. 

1. Introduction 

Expressions for Tr(JiP) (A = x or y or z, p 3 0) are available in the literature in terms 
of the Bernoulli polynomials (Ambler et a1 1962, Subramanian and Devanathan 1974, 
De Meyer and Vanden Berghe 1978) and the hypergeometric functions (Rashid 1979, 
Ullah 1980), JA being the angular momentum matrices. Evaluation of T r ( Jy )  using 
the Brillouin function (Van Vieck 1932, Mattis 1965) could have been a natural corollary 
to some studies in magnetism, e.g. anisotropy constants of rare earth metals as functions 
of temperature and atomic number (Kazakov and Andreeva 1970). The purpose of 
this paper is to obtain (9  2) expressions for Tr(J?) in terms of the Brillouin function 
Bj(x), and derive from them ( 9  3)  the standard properties of T r ( Jy )  (Subramanian 
and Devanathan 1974, 1980, 1985, to be referred to as I, I1 and I11 respectively). As 
corollaries we obtain sum rules for the Bernoulli numbers and the Riemann zeta 
functions (9  4). 

2. Expressions for Tr(J?) in terms of Bj(x) 

The starting point of our calculations is the partition function 

Z =  exp(mx/j) 
m = - j  

where j >  0 is the angular momentum quantum number (in units of h ) .  Since mx = 
(-m)(-x), 2 remains unaltered under the operation x-, -x. Hence 2 is an even 
function of x. The average value of ( m / j ) P ,  p 3 0, is defined as 

( ( m / j ) p )  = Z- 'DP(Z) D = d/dx p s o .  (2) 
In this paper, we follow the convention that X"= 1 for any operator X. It may be 
noted that although ( m / j )  = D(ln Z), in general ((m/j)p) f DP(ln 2)  and hence 
equation (16) of Kazakov and Andreeva (1970) needs a correction. 
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Tr( J?) from the Brillouin function 1181 

This is precisely the condition for the common factor j 2 p  occurring in equation (7) to 
cancel exactly with the j29 coming from the denominators of B:24-”(0) (see equation 
(21) below) contributing to ( ( m / j ) 2 P ) o .  

One can obtain from equation (5) the following: 

((m/j12)0 = BI’’(O) (15a) 
((m/j)4)0 = ~ ( B : ’ ) ( O ) ) ~ +  B:~)(o) (156) 
((m/j)6)o= 15(Bj”(0))3+ 15B1”(0)B:3’(0)+ Bj”(0). ( 1 5 ~ )  

From equations (5), (1 1)-( 14) the coefficient of ( Bj’’(0))” in the expansion of ((m/j)2P)o 
is found to be (2p - l)!! = (2p - 1)(2p -3) . . . x3 x 1 and the coefficient of B:2p-’’(0) to 
be unity (see equations (15)). Note that for the special case ofp = 1 these two coefficients 
are unity as they should be (see equation (15a)) since l!! = 1. It is interesting to note 
that Tr(J?) can be evaluated from the derivatives of the Brillouin function. 

2.2. Expansion of Tr(Jy)  in terms of traces of lower powers of JA 

From equations (2) and (6), we also have 

Tr(JP,) = j” :z Dp(Z) p s o .  

Since 2 is an even function of x, D2”+’(Z) is an odd function of x vanishing at x = 0. 
Hence Tr( JZhp+’) = 0 and 

Tr(J?) = j2p lim D2”’[ZBj(x)]  p a 1  (17) 
x-0 

since D(Z) = ZB,(x) .  Applying Leibnitz’ theorem to equation (17) and using equations 
(13) and (16) we have 

In equation (18) we have made use of the convention that 2” I, the unit matrix, for 
any matrix 2. The binomial coefficients are denoted by (r). Thus Tr(J:”) can be 
expanded in terms of Tr(J:r), r = 0, 1,2,3,  . . . , p - 1; p 2 1. By repeatedly using 
equation (18) we can see that T r ( J2 )  can be expanded in terms of Bj29-’’(0). 

It has been proved in I that the trace of a product of angular momentum matrices 
(given either in a Cartesian or a spherical basis) can be expanded in terms of Tr(J?). 
It is particularly pleasing to note that Tr(J:”) itself can now be expanded in terms of 
traces of lower (even) powers of Jh via the derivatives of the Brillouin function. 

3. Standard properties of Tr(JY) 

3.1. Tr(Jy)  as a polynomial in 7 =io+ 1) 

Since (Abramowitz and Stegun 1970) 
5 

coth(y) = 22“B2,,yZn-’/(2n)! 
n = O  

and ( 2 j +  1)2 = 477 + 1, it follows from equations (3) and (19) that 
I 

B , ( x ) =  C [(47 + 1)9  - 1 ] 8 2 , ~ ~ ~ - ’ / ( 2 q ) ! j ~ ~ .  
9 = 1  
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Here Bzn are the Bernoulli numbers (Abramowitz and Stegun 1970, Arfken 1970). 
From equation (20) we get 

Bj2‘-1)(0) = (24)-’[(47 + 1)‘ - 1]B2,/jz‘ q s 1 .  (21) 

(471+1)”-1 =4r2fs-l(77) S Z l  (22) 

From the binomial theorem, we have 

wherefS-l(T) is a polynomial in 77 of degree ( s -  1) with positive integral coefficients. 
Incidentally the coefficient of xZq-l in the power series expansion of B j ( x )  isj-” times 
77 times a polynomial in 17 of degree q - 1 (with rational coefficients). 

It is clear from equations (7) ,  (13), (14), (21), (22) and the discussions following 
equations (13) and (14) that 

Tr(J:P) =flGp-l(q) p z - 1  (23) 

77 = j ( j +  1) n = ?7(2j+ 1). (24) 

where 

In equation (23), Gp-l( 9) is a polynomial in 7 of degree p - 1 with rational coefficients. 
Alternatively, from equations (18) and (21) we have 

Tr(J f )  = f l / 3  

Tr(J6,) = (fl/21)(37’-37 + 1). 

Tr(J:) = (fl/15)(377 - 1) 

Equation (23) follows easily from equations (18), (21), (22), (24), (25) and induction. 
This qualitative result was obtained earlier using different mathematical techniques ( I ,  
Kaplan and Zia 1979, Rashid 1979). 

Using equation (21), we can retrieve our earlier results for T r ( Jy )  (see I ,  I1 and 
111) from equation (18) which can be regarded as a multi-term recurrence relation for 
the trace polynomials. It is easy to see that equations (15) are consistent with equations 
(25). 

3.2. The constant term of Gp-,(q) 

From equations (18), (21), (23) and (24) we have 

Tr(Jtp) = ( 2 j  + l) j2pB~2p-”(0) +. . . 
and 

vGp-1(~)=(2p)-1[ (4v+1)p-1]B2p+.  . . . (27) 
In equation (27), for p ” 2 ,  the remaining terms have v2  as a common factor (see 
equations (141, (15), (21) and (22)). Since 

lim [(477+ l )p  - 11/77 = 4 p  p s 1  (28) 
r)+O 

it follows from equations (27) and (28) that 

Gp-l(O) = 2 4 ,  p a l  (29) 
as shown in I1 (see equation (4.8)) using a different method. 
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3.3. The common denominator of Tr(Jy) ,  p a  1, is always odd 

It is seen from equations (25) that for 2 r  = 2,4,6,  the common denominator of Tr(Ji‘) 
in its lowest terms is odd. We shall prove by induction that this is true in general for 
r z  1. 

As shown in the appendix, the denominator of [(477 + 1)‘ - 11 B2,/2q, q 3 1 ,  is 
always odd ( B 2 ¶  is a rational number). Since the binomial coefficients occurring in 
equation (18) are integers, it follows from equations (18), (21), (25) and induction 
that the common denominator of Tr(JZP), p 2 1, is always odd (see also the results of 
I, I1 and 111). 

Since (see I and 111) 

2 Tr( J;”-’J’,) = 2 Tr( J?-’J%) = 7 Tr( J;”’) - Tr( J?)  (30) 

where L, M and N denote any permutation of x, y and z ( L ,  M and N are different), 
the denominator of Tr(J:p-2J’,) is always twice an odd integer (see table 1 of I and 
111). Thus the nature (even or odd) of the denominator of Tr(J:p-2J:), p z 1, A, p = x 
or y or z has been clearly established. This result is very useful in the generation of 
these type of traces by means of recurrence relations (I1 and 111). Next we give a 
prescription for finding the denominator of Tr(Jfp). 

Let Dp-l be the denominator of Gp-1(7)) in its lowest terms. When p = 1, G,(v)  
has only a constant term ( =2B2 = i) and hence Do = 3. Since Dp-l is proved to be odd, 
let 

D,-1 = I,JsZt p z 2  (31)  
where I, I ,  and I ,  are all odd positive integers to be determined as follows. 

I, is a product of (odd) prime numbers such that ( a )  each prime factor of I, is a 
divisor of at least one of those numbers which exceed by 1 a non-trivial divisor of 2p 
(i.e. excluding unity and 2p itself); ( b )  If is quadratfrei (Hardy and Wright 1960): Z, 
contains no prime factor raised to a power higher than the first. Since 2 is a non-trivial 
divisor of 2p for p 2 2, If is always divisible by 3. Hence all the denominators D,, 
n 2 0 ,  are divisible by 3.  This result is consistent with the fact that 3G,(2) = 1 ,  n 2 0  
(see equation (4.10) of 11). 

The integer I ,  is given by 

i f 2 p + 1 = p ; , a s 2 , p k  i s a n o d d  prime 
otherwise. (32) 

Since 2p = p z  - 1, LY 5 2, has Pk - 1 as a non-trivial divisor, 1, has Pk as an odd prime 
factor. In other words D,-l will not be quadratfrei in this case. 

The number I ,  is the least positive odd integer such that 

“ = { 2p + 1 

K = P ( ~ P -  l)Dp-i/Dp-* p z 2  (33) 

is an integer, Dp-2 being the denominator of GP-*( 7). Obviously K is divisible by the 
greatest power of 2 which divides p since 2p - 1,  D,-, and Dp-2 are all odd. 

The underlying principles for our prescription for the denominators are: (i) the 
coefficient of 7p-1 in G P - , ( 7 )  is (2p+1)-’ (see 0 4 below); (ii) the constant term of 
Gp-1(7) is 2B2, (see § 3.2). By the von Staudt-Clausen theorem (Ramanujan 1927, 
Hardy and Wright 1960, Arfken 1970) the denominator of B2¶, q 3 1 ,  is the continued 
product of prime numbers which are the next numbers (in the natural order) to the 
factors of 2q (including unity and 2q itself). In other words the denominator of BZq, 
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q 3 1 is quadratfrei and that it is twice an odd integer (see also table 1 of Ramanujan 
(1927) and .4bramowitz and Stegun (1970)); (iii) the coefficients ai(  = Nt/Dp-i, Ni 
being the numerator of ai) of GP-] (  77) = Xyi;  ai?)' can be generated by means of 
recurrence relations starting with either or a, and knowing the coefficients of 
Gp-2(77) (see equations (3.3)-(3.5) of 11). Thus we have obtained a von Staudt- 
Clausen-Ramanujan type prescription for the denominator of Gp-l( 77). 

For the sake of completeness, we present in table 1 the denominator of G P - , ( q )  
for 18 s 2p s 52 along with the corresponding Z,, Is, I ,  and K values (see equations 
(31)-(33)). The values of R = 2Dp-1/d2p are also given, d2p being the denominator of 
BZp' From the von Staudt-Clausen-Ramanujan theorem, it is clear that R 3 1 and is 
odd. Knowing the denominator of Gp-1(77) and we have computed by a program 
Tr(J?) up to 2p = 52 using the recurrence relations given in 11. We have applied 
certain checks to Gp-l(v) as given in I1 and found our results to be correct. The 
numerator and the denominator of B2p found from our calculations agree with those 
given in Ramanujan (1927) and Abramowitz and Stegun (1970). We are thus optimistic 
that our prescription for Dp-l will also work for higher p .  It is observed from table 1 
that Dp-, is quadratfrei whenever 2p + 1 itself is prime (in this case I, and I ,  are 
quadratfrei). We believe that this is true in general, but we have not proved it. 

Table 1. The denominator Dp-, of G p - , ( v )  = R-' Tr(J?), the factors I f ,  I,, I, of Dp-l 
and the quantities K and R. As usual 17 = j ( j +  l ) ,  C l  = ~ ( 2 j - c  I) ,  DP-' = lJIJ, ,  R = 
2DP-,/dzp, d,,  being the denominator of the Bernoulli number K = 
p(2p - l)Dp-l/DP-2. Note that DP-l is divisible by 3; it is quadratfrei whenever 2p-t 1 is 
prime. D7 = 255 (see I) .  

18 1995 5 x 7  19 1 1197 5 
20 3 465 5 x 1 1  3 x 7  1 330 21 
22 345 1 23 5 23 5 
24 6 825 5X7X13 5 1 5 460 5 
26 189 7 32 1 9 63 
28 43 5 5 29 1 870 1 
30 '7 161 7 x 1 1  31 1 7 161 1 
32 58 905 5x17 3 x 1 1  7 4 080 23 1 
34 105 1 5 x 7  1 1 35 
36 959595 5X7X 13x 19 37 1 5757 570 1 
38 4 095 5 3 x 1 3  7 3 1365 
40 47 355 5 x 7 ~ 1 1  41 1 9 020 7 
42 49 665 5 x 7 ~ 1 1  43 1 903 55 
44 108675 5 x 2 3  32x5 7 2 070 315 
46 4 935 1 47 5 x 7  47 35 
48 162435 5X7X 13x 17 7 1 37 128 7 
50 21 879 11 x 13 3 x 1 7  1 165 663 
52 61 215 5 x 7  53 11 3 710 77 

4. Sum rules for the Bernoulli numbers B2,, and the Riemann zeta functions l ( 2 q )  and 

From equation (18) we now obtain sum rules for the Bernoulli numbers and hence 
for the Riemann zeta functions. 

a 1  - 2q)  
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If up-l is the coefficient of qP-l  in G p - l ( q )  defined by equation (23), then (see 
equation (4.7) of 11) 

ap-l = (2p + I)- '  p z  1. (34) 

Now from equations (18), (21), (23), (24) and  (34), we have, after some simple algebra, 
an  interesting sum rule for B2,:  

q = 1  f. (2;; 1)22UB,, = 2p p z  1. (35) 

In the symbolic notation which replaces the equals sign by the symbol = to 
indicate that the two expressions will be equal when exponents are lowered to subscripts 
(see, for example, Rainville 1967) equation (35) takes a very simple form: 

(2B + 1)2P+l= 0 p z  1. (361 

If the left-hand side of equation (36) is expanded binomially and (2B)' is replaced 
by 2'B,, equation (35) is obtained since (Abramowitz and Stegun 1970) Bo= 1, B, = 
-1/2, BZk+l = 0, k z 1. Equation (36) is a special case of a relation given by Lucas 
(1891). 

Equation (18) can be a source of sum rules for B2q. Thus, since ( I  and 111) 

(37a) Tr(J:') = 21-2r r a O  j = i  q = 4  

Tr(J:') = 2 + tirO r s O  j = l  q = 2  (37b) 

3 

it follows from equations (18), (21) and (37) that 

and 

As the Bernoulli numbers are intimately related to the Riemann zeta functions 
through the relations (Abramowitz and Stegun 1970) 

(a) Bzn = ( - 1 ) " - ' 2 ( 2 n ) ! 5 ( 2 n ) / ( 2 . r r ) ' "  n z l  (40) 

(b)  Bzn = -2nl( 1 -2n)  n 2 l  (41 1 
one can easily obtain from equations (35) and (38)-(41) corresponding sum rules for 
5(2q) and l (1-2q) .  Thus, for example, 

and 

p + f (::)(4' - l)qZZq5( 1 - 2q) = 0 p a  1. 
q = 1  

(43 

Equations (35), (38), (391, (42) and (43) are simple sum rules for the Bernoulli numbers 
and the Riemann zeta functions. They have been independently checked and found 
correct for p s 11. 
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Alternatively equations (35), (42) and (43) (for example) can be regarded as 
recurrence relations for BZq, 5(2q) and {( 1 - 2q) respectively. Although Ramanujan 
(1927) had obtained many recurrence relations for B,, based on quite different ideas, 
relations (38) and (39) seemed to have escaped his attention. 

5. Conclusion 

We have shown that Tr(JiP) can be developed from the derivatives (of odd orders) of 
the Brillouin function and that this trace can be expanded in terms of traces of lower 
(even) powers of JA. A von Staudt-Clausen-Ramanujan type prescription has been 
given for the denominators of the trace polynomials. Some results concerning these 
polynomials are only rederived but some are apparently new. As interesting corollaries 
sum rules and recurrence relations for the Bernoulli numbers and the Riemann zeta 
functions have been obtained. 

Acknowledgments 

It is a pleasure to thank Professor C C Grosjean for fruitful conversations on the 
Bernoulli numbers, Professor V Devanathan for his interest in this work, the referees 
for making suggestions for improvement, the Alexander von Humboldt Foundation, 
Bonn, for the award of a fellowship and Professor W Greiner for his kind hospitality 
at the Institute for Theoretical Physics, University of Frankfurt. 

Appendix 

In this appendix we prove that the denominator of 

q 3 l  T = [ (47 + 1)' - 1]BZq/2q 
in its lowest terms is always odd (B2 ,  is a rational number). 

for q > l  
From the fundamental theorem of arithmetic (Hardy and Wright 1960), we have 

q = 2 P N  p 3 0  N = odd. ('4-2) 
Repeatedly using a' - b2 = ( a  + b ) (  a - b ) ,  we find, for p > 0, 

( 4 7 +  1)'- 1 = ( fi [(477 + 1),-'¶ + 11 (-43) 
i = l  

Using the binomial theorem we have 

(477 + - 1 = 2p(4771f'-*(7) q 3 1 .  (A6) 
In equations (A4)-(A6), fs( 7) is a polynomial in 77 of degree s with positive integral 
coefficients. Hence from equations (A2) and (A6) the denominator of T is the 
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denominator of 2B2 , /N .  Since N is odd (see equation (A2)), it is enough to show 
that the denominator of 2B2, is odd. The von Staudt-Clausen-Ramanujan theorem 
(Ramanujan 1927, Hardy and Wright 1960, Arfken 1970) implies that the denominator 
of B2,, q 2 1, is always twice an odd integer (see also D 3.3).  It is now clear that the 
denominator of T, in its lowest terms, is always odd for q 3 1. 
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